联合非负矩阵分解在多层网络中的社区检测

上传者: 38727980 | 上传时间: 2022-01-15 23:26:55 | 文件大小: 940KB | 文件类型: -
许多复杂的系统由通过不同层的耦合网络组成,其中每个层代表许多可能的交互类型之一。 一个基本的问题是如何在多层网络中提取社区。 当前算法要么将多层网络分解为单层网络,要么通过使用共识聚类扩展单层网络的算法。 但是,由于批评这些方法忽略了各层之间的连接,从而导致精度低。 为了解决这个问题,提出了一种定量函数(多层模块密度),用于多层网络中的社区检测。 之后,我们证明了多层模块化密度的迹线优化等效于算法的目标函数,例如内核K均值,非负矩阵分解,频谱聚类和多视图聚类。层网络,为设计社区检测算法提供了理论基础。此外,通过同时分解与多层网络相关的矩阵,开发了一种半监督联合非负矩阵分解算法(S2-jNMF)。 与传统的半监督算法不同,部分监督被集成到S2-jNMF算法的目标中。 最后,通过在人工和现实世界网络上的大量实验,我们证明了所提出的方法优于多层网络中用于社区检测的最新方法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明