许多复杂的系统由通过不同层的耦合网络组成,其中每个层代表许多可能的交互类型之一。 一个基本的问题是如何在多层网络中提取社区。 当前算法要么将多层网络分解为单层网络,要么通过使用共识聚类扩展单层网络的算法。 但是,由于批评这些方法忽略了各层之间的连接,从而导致精度低。 为了解决这个问题,提出了一种定量函数(多层模块密度),用于多层网络中的社区检测。 之后,我们证明了多层模块化密度的迹线优化等效于算法的目标函数,例如内核K均值,非负矩阵分解,频谱聚类和多视图聚类。层网络,为设计社区检测算法提供了理论基础。此外,通过同时分解与多层网络相关的矩阵,开发了一种半监督联合非负矩阵分解算法(S2-jNMF)。 与传统的半监督算法不同,部分监督被集成到S2-jNMF算法的目标中。 最后,通过在人工和现实世界网络上的大量实验,我们证明了所提出的方法优于多层网络中用于社区检测的最新方法。
1