基于改进协同过滤算法的时间权重推荐

上传者: 38725625 | 上传时间: 2021-10-10 09:52:45 | 文件大小: 1.97MB | 文件类型: -
传统的协同过滤算法存在数据稀疏、可扩展性弱和用户兴趣度偏移等冋题,算法运行效率和预测精度偏低。针对上述问题,提出一种改进的 Mini batch K- Means时间权重推荐算法。采用 Pearson相关系数改进MiBatch K- Means聚类,利用改进的聚类算法对稀疏评分矩阵进行聚类,计算用户兴趣评分并完成对稀疏矩阵的填充。考虑用户兴趣随时间变化的影响,引入牛顿冷却时间杈重计算攝似度,并基于已填充评分矩阵进行相似度权计算,得到项目最终评分。实验结果表明,与传统协同过滤算该算法的平均绝对误差下降了31.08%,准确率、召回率、門Ⅰ值均有较大提升,具有较髙的评分预测精确。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明