基于改进的RANSAC的场景分类点云粗配准算法

上传者: 38725260 | 上传时间: 2021-11-30 11:14:32 | 文件大小: 8.57MB | 文件类型: -
点云配准是基于RGB-D(RGB-depth)传感器的室内场景重建的关键技术之一。针对稀疏建图中关键帧间的点云配准问题,提出一种基于改进的随机采样一致性(RANSAC)的场景分类点云粗配准算法。首先分别利用几何信息与光度信息进行关键点的检测、描述与匹配,然后由场景分类算法判断场景类别,适应性地结合几何匹配与光度匹配,最后提出一种改进的RANSAC算法,通过有偏重的随机采样与自适应的假设评价,对关键帧间的变换矩阵进行估计。采用公开的RGB-D数据集对整体的点云粗配准算法进行实验验证,并与多种算法进行比较。实验结果表明,该点云粗配准算法能够实现稳健有效的变换矩阵估计,有助于后续的精配准与整体的室内场景重建。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明