使用FPGA实现600Msps QPSK的并行符号时序恢复

上传者: 38724229 | 上传时间: 2025-11-19 20:40:49 | 文件大小: 1022KB | 文件类型: PDF
本文提出了一种适用于高数据速率通信接收机的高效并行符号定时架构。 所展示的架构依赖于经典Gardner循环的修改版本,并具有“多通道流水线”内插器,该符号使符号率比FPGA的时钟率高出几倍,从而最大程度地提高了可实现的吞吐量。 在Xilinx XC7VX690T FPGA上以150MHz时钟速率演示了时序恢复方案,并在4.8GHz采样率ADC上演示了该时序恢复方案,以实现600Msps符号速率的QPSK数据流。 此外,可以观察到,提出的方案仅占用目标FPGA中逻辑,存储和计算资源的2%。 稍作修改,我们的算法就可以适用于其他幅度调制星座,例如8PSK,16PSK或QAM。 ### 使用FPGA实现600Msps QPSK的并行符号时序恢复 #### 摘要 本文介绍了一种高效并行符号时序恢复架构,特别适用于高数据速率的通信接收机。该架构基于经典Gardner循环的一个修改版本,并引入了一个“多通道流水线”插值器,使得符号率可以远高于FPGA的工作时钟频率,从而极大地提升了可实现的吞吐量。本研究在Xilinx XC7VX690T FPGA上以150MHz时钟速率进行了实验验证,并与一个采样率为4.8GHz的ADC结合使用,实现了600Msps QPSK数据流的时序恢复。实验证明,所提出的方案只占用了目标FPGA中的逻辑、存储和计算资源的2%。稍加修改后,该算法还可以应用于其他类型的幅度相位调制星座,例如8PSK、16PSK或QAM。 #### 关键词 符号时序恢复、插值、多通道流水线、FPGA #### 1. 引言 符号同步(即定时恢复)是数字通信接收机中的关键技术之一。其基本原理是从输入的基带数字波形中找到每个符号的最佳抽样位置。通常情况下,抽样率\(f_{\text{smp}}\)被选择为符号率\(R_s\)的整数倍,即\(f_{\text{smp}} = N \cdot R_s\),其中\(N\)为正整数。经典的定时恢复方法,如Gardner循环,在其原始形式下,假设接收机可以执行数字信号处理操作的时钟频率\(f_{\text{clk}}\)至少等于或大于\(f_{\text{smp}}\),这是许多实际数字接收机设计的起点。 然而,随着符号率的提高,意味着信息传输带宽的增加,这对于全球卫星通信系统、无人机(UAV)4K视频传输等众多应用场景来说至关重要。当符号率\(R_s\)提高到某个水平,以至于\(f_{\text{smp}}\)甚至\(R_s\)超过了FPGA的工作时钟频率时,传统的定时恢复方法面临挑战。 #### 2. 并行符号时序恢复架构 为了克服上述限制,本文提出了一种新的并行符号时序恢复架构。这一架构的特点在于利用了改进版的Gardner循环以及多通道流水线插值技术。改进后的Gardner循环能够更准确地估计符号的定时误差,而多通道流水线插值则可以有效降低符号间的干扰,并允许符号率远远超过FPGA的时钟频率。 **2.1 改进的Gardner循环** Gardner循环是一种常用的无数据辅助的定时恢复方法。传统Gardner循环通过检测相邻两个样本之间的相位差来估计定时误差。本文中的改进版Gardner循环进一步优化了相位检测机制,提高了定时误差估计的精度。 **2.2 多通道流水线插值** 多通道流水线插值技术的核心在于将符号的处理过程分解成多个并行的子通道,每个子通道负责一部分数据的处理。这种方法可以显著提高处理速度,同时减少对FPGA资源的占用。通过采用合适的插值算法,可以有效地补偿由于高速采样带来的时延和失真问题。 #### 3. 实验验证 为了验证所提方案的有效性,我们在Xilinx XC7VX690T FPGA平台上进行了实验。该平台工作在150MHz的时钟频率下,与4.8GHz采样率的ADC相结合,成功实现了600Msps QPSK数据流的符号时序恢复。实验结果表明,即使在如此高的数据速率下,方案仍然保持良好的性能,并且仅消耗了目标FPGA中约2%的逻辑、存储和计算资源。 #### 4. 应用扩展性 本研究还讨论了方案的应用扩展性,即如何将此架构应用到其他类型的调制星座中,如8PSK、16PSK或QAM等。这些调制方式虽然在复杂度上高于QPSK,但同样适用于高速数据传输场景。通过适当的修改,本文提出的架构可以很好地适应这些调制方式,从而拓宽其应用场景。 #### 结论 本文提出了一种高效的并行符号时序恢复架构,该架构基于改进的Gardner循环和多通道流水线插值技术,成功地在高数据速率通信接收机中实现了600Msps QPSK数据流的符号时序恢复。实验结果显示该架构不仅性能优越,而且资源消耗极低,具有很高的实用价值。此外,该架构还展示了良好的扩展性,可以应用于其他类型的调制星座,展现出广泛的应用前景。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明