时空上下文感知协同QoS预测

上传者: 38722588 | 上传时间: 2022-05-24 14:23:08 | 文件大小: 384KB | 文件类型: PDF
随着Web服务的指数级增长,建议使用各种协作QoS预测方法对服务质量(QoS)进行有效评估,并帮助用户选择合适的服务。 考虑到服务调用的复杂时空上下文的影响并在预测过程中利用它们的特征,仍然是一项技术挑战。 为此,我们提出了两个通用的时空上下文感知协作神经模型(STCA-1和STCA-2),通过考虑服务端和用户端的调用时间和多个空间特征来进行QoS预测。 我们提出的模型利用层次神经网络来实现原始特征的嵌入表达,二阶特征的生成,一阶和二阶特征的融合,空间特征之间的交互以及时态特征的逐层化。 特别地,引入注意力机制来自动地将权重分配给空间特征,并实现在特征融合中的判别性应用。。在大规模数据集上的实验证明了该方法的有效性:(1)。预测误差可以显着与基线方法相比尤其如此。在稀疏训练数据的情况下,我们的模型在MAE和NMAE方面的性能提高了约10.9–21.0%,在RMSE方面的性能提高了2.4–7.8%。 (2)注意机制使我们能够更合理地对特征融合的有效性做出直观的解释,从而增强了预测模型的可解释性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明