多智能体粒子群优化的SVR 模型预测控制

上传者: 38722588 | 上传时间: 2021-11-26 15:59:24 | 文件大小: 341KB | 文件类型: -
参数的优化选择对支持向量回归机的预测精度和泛化能力影响显著, 鉴于此, 提出一种多智能体粒子群算法(MAPSO) 寻优其参数的方法, 并建立MAPSO支持向量回归模型, 用于非线性系统的模型预测控制, 推导出最优控制率. 采用该算法对非线性系统进行仿真, 并与基于粒子群算法、基于遗传算法优化支持向量回归机的模型预测控制方法和RBF 神经网络的预测控制方法进行比较, 结果表明, 所提出的算法具有更好的控制性能, 可以有效应用于非线性系统控制中.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明