上传者: 38715831
|
上传时间: 2021-11-30 15:39:28
|
文件大小: 59KB
|
文件类型: -
最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。
数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。
这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。二是非常简单,加上注释最长的也不过11行。在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。大家可以把这篇文章收藏起来,当做工具箱使用。
涵盖8大场景的数据清洗代码
这些数据清洗代码,一共涵盖8个场景,分别是:
删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、