上传者: 38711333
|
上传时间: 2022-06-02 10:01:58
|
文件大小: 585KB
|
文件类型: PDF
针对目前开采沉陷预计方法的种种缺陷,提出了一种新的预计方法。将果蝇优化算法(FOA)与支持向量机(SVM)相结合,建立FOA-SVM预测模型。选取煤层倾角、采厚、平均采深等参数作为模型的输入参数,最大下沉量作为模型的输出参数。选取训练集样本,应用FOA对SVM的参数进行寻优,确定最佳的SVM参数。采用预测集样本对该预测模型进行检验,同时将该模型预测性能与其他预测模型进行对比分析。结果表明:与GA-SVM模型、PSO-SVM模型和神经网络预测模型相比,该模型具有更高的预测能力和泛化能力,可以较好地实现对开采沉陷的预测。