分布式数据挖掘中的最优K相异性取样技术 (2008年)

上传者: 38710566 | 上传时间: 2022-05-07 14:46:53 | 文件大小: 435KB | 文件类型: PDF
为了弥补基于集中式处理的分布式数据挖掘方法的不足,有效地实施分布式数据挖掘(DDM)任务,需要一种能从分布式数据源中获取多样化代表性取样集的技术。提出了一种新的适用于分布式数据挖掘环境的数据取样算法(OptiSim-DDM方法),算法核心是基于最优K相异性进行数据选择,采用移动Agent技术和扩展的最优K相异性数据多样化代表性子集选择方法,能在各分布式数据场地中轮转选择出全局数据集的多样化代表性取样集。该方法通过降低所挖掘的数据集的数据规模来降低数据挖掘算法的时空复杂度,降低网络通讯代价,提高数据挖掘的执

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明