PyTorch学习笔记(三)定义各种卷积池化线性激活层

上传者: 38706100 | 上传时间: 2022-01-04 16:07:58 | 文件大小: 475KB | 文件类型: -
Environment OS: macOS Mojave Python version: 3.7 PyTorch version: 1.4.0 IDE: PyCharm 文章目录0. 写在前面1. 卷积与转置卷积1.1 卷积层1.2 转置卷积层2. 池化与去池化2.1 池化层2.2 去池化层3. 线性连接4. 激活函数4.1 sigmoid4.2 tanh4.3 ReLU4.4 ReLU 的修改版们 0. 写在前面 本文记录一下使用 PyTorch 建立神经网络模型中各种层的定义方法,包括卷积层(卷积、转置卷积)、池化层(平均池化、最大池化、反池化)、全连接层、激活函数层。这里主要记录对于二

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明