scara机器人matlab代码-SCARA_Robot_Modelling_and_Control:该项目由一个SCARA机器人模型组成,它

上传者: 38706055 | 上传时间: 2024-04-10 11:54:15 | 文件大小: 5.33MB | 文件类型: ZIP
Scara机器人matlab代码SCARA_Robot_Modelling_and_Control 该项目由一个 SCARA 机器人模型组成,它在 Matlab 中构建了机器人模型,并在 Simulink 中实现了不同的控制。 在这里我们可以找到项目组成的所有文件。 这是一个混合文件,其中最重要的是“rob_sic”,这是重新统一项目所有要点的主要代码,在文件“ElaboratoCdR18_19.pdf”中详细说明。 除了“.m”文件之外,我们还可以看到各种 Simulink 项目,其中构建了所有类型的控件(鲁棒性和自适应性)。 最后,提交给教授的主要文件是“PROGETTO DE CORSO_C.pdf”,用意大利语编写,因为该项目是在意大利那不勒斯的伊拉斯谟计划期间完成的。

文件下载

资源详情

[{"title":"( 43 个子文件 5.33MB ) scara机器人matlab代码-SCARA_Robot_Modelling_and_Control:该项目由一个SCARA机器人模型组成,它","children":[{"title":"SCARA_Robot_Modelling_and_Control-master","children":[{"title":"Controllo_Robusto.slx.r2015a <span style='color:#111;'> 25.80KB </span>","children":null,"spread":false},{"title":"Controllo_Robusto.slx.autosave <span style='color:#111;'> 30.50KB </span>","children":null,"spread":false},{"title":"Cinematica_Inversa_Jacobiana_Pseudoinversa.slx.original <span style='color:#111;'> 22.37KB </span>","children":null,"spread":false},{"title":"TrayCirc.m <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"GenTrayControl.m <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"inicia_dinam.m <span style='color:#111;'> 7.31KB </span>","children":null,"spread":false},{"title":"Cinematica_Inversa_Jacobiana_Inversa.slx <span style='color:#111;'> 22.65KB </span>","children":null,"spread":false},{"title":"GenTray.m <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"Secondo_Ordine.slx <span style='color:#111;'> 26.20KB </span>","children":null,"spread":false},{"title":"GenTrayPseudo.m <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"Cinematica_Inversa_Jacobiana_Pseudoinversa.slx.r2015a <span style='color:#111;'> 21.83KB </span>","children":null,"spread":false},{"title":"fun_B.m <span style='color:#111;'> 552B </span>","children":null,"spread":false},{"title":"Cinematica_Inversa_Jacobiana_Traspuesta.slx <span style='color:#111;'> 23.17KB </span>","children":null,"spread":false},{"title":"Cinematica_Inversa_Jacobiana_Traspuesta.slx.original <span style='color:#111;'> 19.73KB </span>","children":null,"spread":false},{"title":"GenTray_Guille.m <span style='color:#111;'> 6.68KB </span>","children":null,"spread":false},{"title":"Algoritmo_Secondo_Ordine.slx <span style='color:#111;'> 25.72KB </span>","children":null,"spread":false},{"title":"Controllo_Adattativo.slx <span style='color:#111;'> 35.71KB </span>","children":null,"spread":false},{"title":"fun_w.m <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"JacobianaNumerica.m <span style='color:#111;'> 1002B </span>","children":null,"spread":false},{"title":"elaborato.m <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"CinematicaDirecta.m <span style='color:#111;'> 269B </span>","children":null,"spread":false},{"title":"startup_rvc.m <span style='color:#111;'> 540B </span>","children":null,"spread":false},{"title":"fun_n.m <span style='color:#111;'> 659B </span>","children":null,"spread":false},{"title":"Coef.m <span style='color:#111;'> 634B </span>","children":null,"spread":false},{"title":"Controllo_Robusto.slx <span style='color:#111;'> 40.83KB </span>","children":null,"spread":false},{"title":"ElaboratoCdR18_19.pdf <span style='color:#111;'> 26.29KB </span>","children":null,"spread":false},{"title":"modelo_dinam.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"JacobianaTrasposta.m <span style='color:#111;'> 1010B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 758B </span>","children":null,"spread":false},{"title":"putaMIERDAAAA.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"JacobianaDerivada.m <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"prueba.m <span style='color:#111;'> 834B </span>","children":null,"spread":false},{"title":"rob_sic.m <span style='color:#111;'> 14.05KB </span>","children":null,"spread":false},{"title":"Cinematica_Inversa_Jacobiana_Inversa.slx.original <span style='color:#111;'> 21.93KB </span>","children":null,"spread":false},{"title":"CinematicaDirectaPseudo.m <span style='color:#111;'> 269B </span>","children":null,"spread":false},{"title":"Cinematica_Inversa_Jacobiana_Pseudoinversa.slx <span style='color:#111;'> 24.81KB </span>","children":null,"spread":false},{"title":"PseudoJacobianaNumerica.m <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"Euler.m <span style='color:#111;'> 397B </span>","children":null,"spread":false},{"title":"PROGETTO DE CORSO_C.pdf <span style='color:#111;'> 5.11MB </span>","children":null,"spread":false},{"title":"Graficas.m <span style='color:#111;'> 13.14KB </span>","children":null,"spread":false},{"title":"rob_sic_fun_q.m <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"JacobianaAnalitica.m <span style='color:#111;'> 938B </span>","children":null,"spread":false},{"title":"CinematicaInversa.m <span style='color:#111;'> 369B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明