深度学习中的卷积神经网络系统设计及硬件实现

上传者: 38704870 | 上传时间: 2021-04-18 15:17:44 | 文件大小: 414KB | 文件类型: PDF
针对目前深度学习中的卷积神经网络(CNN)在CPU平台下训练速度慢、耗时长的问题,采用现场可编程门阵列(FPGA)硬件平台设计并实现了一种深度卷积神经网络系统。该系统采用修正线性单元(ReLU)作为特征输出的激活函数并使用Softmax函数作为输出分类器。利用流水线技术并针对每一层的特征运算进行了并行处理,从而能够在1个系统时钟周期内完成整个CNN中的295次卷积运算。系统最后采用MNIST数据集作为实验样本,实验结果表明,在50 MHz的工作频率下,FPGA的训练用时相较于通用CPU的训练用时提升了8.7倍,经过2 000次迭代后系统识别的准确率为92.42%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明