使用机器学习进行财务预测:价格与回报-研究论文

上传者: 38703906 | 上传时间: 2022-11-20 07:02:54 | 文件大小: 714KB | 文件类型: PDF
使用机器学习工具预测股价的定向运动已经吸引了大量研究。 定向预测模型中两个最常见的输入特征是股票价格和回报。 前者和后者变量之间的选择通常是主观的。 在本研究中,我们比较了股票价格和回报作为方向预测模型中输入特征的有效性。 我们使用十家美国大盘股公司的 10 年历史数据对两个输入特征进行了广泛的比较。 我们采用四种流行的分类算法作为我们研究中使用的预测模型的基础。 结果表明,股票价格是比回报更有效的独立输入特征。 当我们向输入特征集添加技术指标时,股票价格和回报的有效性相等。 我们得出结论,在预测价格变动方向时,价格通常是比返回值更有效的输入特征。 我们的结果应该有助于对将机器学习模型应用于股票价格预测感兴趣的研究人员和从业者。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明