基于CHMM的滚动轴承故障预测与状态评估

上传者: 38703787 | 上传时间: 2021-10-16 22:06:30 | 文件大小: 340KB | 文件类型: -
为了有效地识别滚动轴承的不同失效模式,本文提出了一种基于小波包分解和连续隐马尔可夫模型的滚动轴承故障预测方法。 首先利用小波包分解对滚动轴承的振动信号进行处理,以提取出能量特征,然后将提取出的特征作为连续隐马尔可夫模型的输入。 训练了大量样本以估计不同轴承故障的连续隐马尔可夫模型的参数。 一旦达到该学习阶段,便会在第二阶段中利用生成的模型来连续评估滚动轴承的当前健康状态,并通过计算监视不同CHMM数据的概率来评估故障模式。 测试结果表明,该方法可以准确预测滚动轴承的故障,并评估滚动轴承的损坏状态。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明