下一步:通过Time-LSTM对用户行为进行建模

上传者: 38701156 | 上传时间: 2022-02-26 17:42:29 | 文件大小: 294KB | 文件类型: -
最近,推荐系统(RS)的递归神经网络(RNN)解决方案变得越来越流行。 洞察力在于,用户动作序列中存在一些固有的模式,并且事实证明,当对顺序数据进行建模时,RNN的表现非常出色。 在诸如语言建模之类的传统任务中,RNN解决方案通常仅考虑对象的顺序顺序,而没有间隔的概念。 但是,在RS中,用户动作之间的时间间隔对于捕获用户动作与传统RNN体系结构之间的关系非常重要,不利于对它们进行建模。 在本文中,我们提出了一个新的LSTM变体,即Time-LSTM,以对用户的顺序动作进行建模。 Time-LSTM为LSTM配备时间门,以对时间间隔进行建模。 这些时间门经过专门设计,因此与传统的RNN解决方案相比,Time-LSTM可以更好地捕捉用户的短期和长期利益,从而提高推荐性能。 对两个真实数据集的实验结果表明,使用Time-.LSTM推荐方法优于传统方法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明