基于自适应角度损失函数的深度人脸识别算法研究

上传者: 38699492 | 上传时间: 2021-11-15 09:35:09 | 文件大小: 1.14MB | 文件类型: -
角度空间损失函数往往因需要手动调节超参数而引起算法训练的不稳定,类别标签数量的不同也将导致算法的移植性较差。针对这些问题,提出一种带有下界判断的自适应角度空间损失函数并应用于人脸识别。该方法以假设人脸表达特征分布在超球体空间为切入点,通过分析不同超参数对训练结果的影响,使预测概率公式的二阶导数为零并动态地计算当前mini-batch角度分布的去尾平均数; 为了提高算法的可移植性,根据类别中心的最小期望后验概率给出自适应调节超参数的下界。通过在LFW和MegaFace百万级人脸数据集上进行算法评估,证明提出的方法可以有效地提高人脸识别精度以及模型收敛率,在亚洲人脸数据集上的实验证明该方法具有较好的鲁棒性与移植性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明