三次样条插值代码matlab-MultiFrameSuperResolution:基于Matlab的多帧超分辨率工具

上传者: 38697471 | 上传时间: 2022-04-07 18:44:53 | 文件大小: 22.61MB | 文件类型: ZIP
三次样条插值代码matlab Matlab的多帧超分辨率工具,灵感来自Oded Hanson的“稳健而快速的超分辨率”工具。 使用Matlab App-Designer对该应用程序进行了修改和重建,修复了“鲁棒快速超分辨率”和“卢卡斯-坎纳德仿射光流”算法的问题。 添加了“ MATLAB图像配准”和“自适应内核回归”作为计算超分辨率的附加选项。 信息 该项目是在THKöln的一个主题为“音频和视频技术的扩展研究”(AVT)的学期项目的背景下实现的。 特征 MFSR工具可从低分辨率图像的视频中计算出高分辨率图像。 从多种图像配准方法和超分辨率算法中选择。 支持的视频输入格式为AVI,MOV,MP4和M4V。 图像配准方法: MATLAB图像配准 Lukas-Kanade光学流仿射 卢卡斯-卡纳德(Lucas-Kanade)光学流动运动 超分辨率算法: 自适应内核回归 三次样条插值 强大的超分辨率 快速强大的超分辨率 源代码 源代码位于MFSR_App文件夹中。 该应用程序是使用Matlab App-Designer构建的,并使用Matlab Application Compiler进行了

文件下载

资源详情

[{"title":"( 71 个子文件 22.61MB ) 三次样条插值代码matlab-MultiFrameSuperResolution:基于Matlab的多帧超分辨率工具","children":[{"title":"MultiFrameSuperResolution-master","children":[{"title":"Video_Samples","children":[{"title":"Color","children":[{"title":"pcb_zoom_out_fast.mp4 <span style='color:#111;'> 378.15KB </span>","children":null,"spread":false},{"title":"Book_case1_small.avi <span style='color:#111;'> 973.50KB </span>","children":null,"spread":false},{"title":"face_adyoron_2.avi <span style='color:#111;'> 119.50KB </span>","children":null,"spread":false},{"title":"Adyoron_small.avi <span style='color:#111;'> 1.83MB </span>","children":null,"spread":false},{"title":"face_adyoron_1.avi <span style='color:#111;'> 235.00KB </span>","children":null,"spread":false},{"title":"pcb_zoom_out_slow.mp4 <span style='color:#111;'> 443.16KB </span>","children":null,"spread":false},{"title":"airplane_zoom_in.mp4 <span style='color:#111;'> 30.51KB </span>","children":null,"spread":false}],"spread":true},{"title":"adyoron_rotation.avi <span style='color:#111;'> 299.50KB </span>","children":null,"spread":false},{"title":"alpaca.avi <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"Emily_small.avi <span style='color:#111;'> 305.50KB </span>","children":null,"spread":false},{"title":"face_adyoron_1_GS.avi <span style='color:#111;'> 235.00KB </span>","children":null,"spread":false},{"title":"text.avi <span style='color:#111;'> 250.00KB </span>","children":null,"spread":false},{"title":"eia_lr.avi <span style='color:#111;'> 385.00KB </span>","children":null,"spread":false},{"title":"disk.avi <span style='color:#111;'> 217.00KB </span>","children":null,"spread":false},{"title":"face_adyoron_2_GS.avi <span style='color:#111;'> 119.50KB </span>","children":null,"spread":false},{"title":"Alpaca_small.avi <span style='color:#111;'> 368.00KB </span>","children":null,"spread":false},{"title":"car.avi <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"Emily.avi <span style='color:#111;'> 2.89MB </span>","children":null,"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 5B </span>","children":null,"spread":false},{"title":"MFSR_Tool","children":[{"title":"MFSR_Tool_Win.zip <span style='color:#111;'> 3.97MB </span>","children":null,"spread":false},{"title":"MFSR_Tool_Mac.dmg <span style='color:#111;'> 3.49MB </span>","children":null,"spread":false}],"spread":true},{"title":"Papers","children":[{"title":"Pyramidal Implementation of the Lucas Kanade Feature Tracker.pdf <span style='color:#111;'> 187.69KB </span>","children":null,"spread":false},{"title":"Fast and Robust Multiframe Super Resolution.pdf <span style='color:#111;'> 5.29MB </span>","children":null,"spread":false},{"title":"Affine Motion Model","children":[{"title":"Fast super-resolution with affine motion using an adaptive Wiener filter and its application to airborne imaging.pdf <span style='color:#111;'> 2.44MB </span>","children":null,"spread":false}],"spread":true},{"title":"Video Super-Resolution by Adaptive Kernel Regression.pdf <span style='color:#111;'> 524.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"MFSR_App","children":[{"title":"Helper","children":[{"title":"CropImage.m <span style='color:#111;'> 764B </span>","children":null,"spread":false},{"title":"CreateLRImageSeq.m <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"BuildImage.m <span style='color:#111;'> 364B </span>","children":null,"spread":false},{"title":"LoadVideo.m <span style='color:#111;'> 345B </span>","children":null,"spread":false},{"title":"MedianAndShift.m <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"ShowProgress.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"GradientRegulization.m <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false},{"title":"SaveFile.m <span style='color:#111;'> 359B </span>","children":null,"spread":false}],"spread":true},{"title":"SuperResolution","children":[{"title":"FastRobust","children":[{"title":"FastRobustSR.m <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"FastGradientBackProject.m <span style='color:#111;'> 898B </span>","children":null,"spread":false}],"spread":true},{"title":"Robust","children":[{"title":"RobustSR.m <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"GradientBackProject.m <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"AdaptiveKernel","children":[{"title":"AdaptiveKernelRegression.m <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"SplineInterpolation","children":[{"title":"CubicSplineInterp.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"MFSR_App.mlapp <span style='color:#111;'> 121.32KB </span>","children":null,"spread":false},{"title":"Project","children":[{"title":"MFSR_App_Win.prj <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"MFSR_App_resources","children":[{"title":"icon_48.png <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"icon_24.png <span style='color:#111;'> 919B </span>","children":null,"spread":false},{"title":"icon.icns <span style='color:#111;'> 627.87KB </span>","children":null,"spread":false},{"title":"icon_16.png <span style='color:#111;'> 625B </span>","children":null,"spread":false},{"title":"MFSR_Icon_400x400.png <span style='color:#111;'> 15.54KB </span>","children":null,"spread":false},{"title":"icon_32.png <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"MFSR_Splash_150x300.png <span style='color:#111;'> 8.85KB </span>","children":null,"spread":false},{"title":"icon.ico <span style='color:#111;'> 66.06KB </span>","children":null,"spread":false},{"title":"MFSR_Icon.png <span style='color:#111;'> 25.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"MFSR_App_Mac.prj <span style='color:#111;'> 7.21KB </span>","children":null,"spread":false}],"spread":true},{"title":"ImageRegistration","children":[{"title":"LKOFlow","children":[{"title":"GuassianPyramid.m <span style='color:#111;'> 812B </span>","children":null,"spread":false},{"title":"IterativeLKOpticalFlow.m <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"RegisterImageSeq.m <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"GaussianDownSample.m <span style='color:#111;'> 768B </span>","children":null,"spread":false},{"title":"ResampleImg.m <span style='color:#111;'> 282B </span>","children":null,"spread":false},{"title":"ComputeLKFlowParms.m <span style='color:#111;'> 901B </span>","children":null,"spread":false},{"title":"PyramidalLKOpticalFlow.m <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"Matlab","children":[{"title":"RegisterImageSeqMatlab.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"LKOFlowAffine","children":[{"title":"GaussianDownSampleAffine.m <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"ResampleImgAffine.m <span style='color:#111;'> 489B </span>","children":null,"spread":false},{"title":"RegisterImageSeqAffine.m <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"GuassianPyramidAffine.m <span style='color:#111;'> 830B </span>","children":null,"spread":false},{"title":"PyramidalLKOpticalFlowAffine.m <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"IterativeLKOpticalFlowAffine.m <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"ComputeLKFlowParmsAffine.m <span style='color:#111;'> 998B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"MFSR_App.m <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"Images","children":[{"title":"MFSR_Tool.png <span style='color:#111;'> 341.72KB </span>","children":null,"spread":false},{"title":"MFSR_Logo.png <span style='color:#111;'> 10.39KB </span>","children":null,"spread":false}],"spread":true},{"title":".vscode","children":[{"title":"settings.json <span style='color:#111;'> 71B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明