python构建指数平滑预测模型示例

上传者: 38696836 | 上传时间: 2021-12-05 20:39:23 | 文件大小: 139KB | 文件类型: -
指数平滑法 其实我想说自己百度的… 只有懂的人才会找到这篇文章… 不懂的人…看了我的文章…还是不懂哈哈哈 指数平滑法相比于移动平均法,它是一种特殊的加权平均方法。简单移动平均法用的是算术平均数,近期数据对预测值的影响比远期数据要大一些,而且越近的数据影响越大。指数平滑法正是考虑了这一点,并将其权值按指数递减的规律进行分配,越接近当前的数据,权重越大;反之,远离当前的数据,其权重越小。指数平滑法按照平滑的次数,一般可分为一次指数平滑法、二次指数平滑法和三次指数平滑法等。然而一次指数平滑法适用于无趋势效应、呈平滑趋势的时间序列的预测和分析,二次指数平滑法多适用于呈线性变化的时间序列预测。 具体公式

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明