可预见的不平等? 机器学习对信贷市场的影响-研究论文

上传者: 38696196 | 上传时间: 2021-10-30 20:52:33 | 文件大小: 1.23MB | 文件类型: -
统计技术的创新引发了对跨种族和性别等类别的分布影响的担忧。 从理论上讲,随着统计技术的进步,分布结果取决于函数形式的变化如何与可观察特征的跨类别分布相互作用。 使用美国抵押贷款的详细管理数据,我们将传统 logit 和更复杂的机器学习违约预测模型的预测嵌入到一个简单的均衡信用模型中。 机器学习模型总体上略微增加了信贷供应,但增加了组间和组内的比率差异; 影响主要来自揭示默认值和可观察值之间结构关系的灵活性,而不是来自排除特征的三角测量。 我们预测黑人和西班牙裔借款人从新技术中获益的可能性要小得多。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明