灵活的贝叶斯惩罚回归建模:贝叶斯套索、马蹄铁和马蹄铁+线性、逻辑回归和计数回归-matlab开发

上传者: 38692631 | 上传时间: 2022-03-14 16:14:46 | 文件大小: 206KB | 文件类型: -
这是一个全面的、用户友好的工具箱,实现了贝叶斯线性回归、逻辑回归和计数回归的最新技术。 该工具箱提供了 ridge、lasso、horseshoe、horseshoe+、log-t 和 g-prior 回归的高效且数值稳定的实现。 对于预测变量数量大于样本大小的数据集,建议使用套索、马蹄形、马蹄形+ 和 log-t 先验,并且 log-t 先验提供对未知稀疏级别的适应。 该工具箱允许将预测变量分配到逻辑分组(可能重叠,以便预测变量可以成为多个组的一部分)。 这可用于利用关于预测因子的先验知识以及它们如何相互关联(例如,将遗传数据分组为基因和基因集合,例如通路)。 现在通过实施泊松和几何回归模型支持计数回归。 为了支持带有异常值的数据分析,我们在贝叶斯线性回归的实现中提供了两个重尾误差模型:拉普拉斯和学生 t 分布误差。 大多数功能都易于使用,工具箱可以直接处理 MATLAB 表(包括自

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明