基于sklearn的logistic回归对于鸢尾花的机器学习分类实践

上传者: 38691055 | 上传时间: 2021-10-17 02:54:57 | 文件大小: 266KB | 文件类型: -
ar c gi
sklearn(scikit-learn)是python机器学习常用的第三方模块,是一个开源的机器学习库,它支持监督学习和非监督学习。它还为模型拟合、数据预处理、模型选择和评估以及许多其他实用工具提供了各种工具。sklearn对机器学习的常用算法进行了封装,包括回归、降维、分类、聚类等。对于以下的机器学习分类实践所用到的函数及方法进行说明。 1.np.c_[ ]和np.r_[ ]的用法解析 >>> import numpy as np >>> a=np.array([[1,2,3],[4,5,6]]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>>

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明