上传者: 38689551
|
上传时间: 2021-10-06 23:53:46
|
文件大小: 205KB
|
文件类型: -
1 K-means算法
实际上,无论是从算法思想,还是具体实现上,K-means算法是一种很简单的算法。它属于无监督分类,通过按照一定的方式度量样本之间的相似度,通过迭代更新聚类中心,当聚类中心不再移动或移动差值小于阈值时,则就样本分为不同的类别。
1.1 算法思路
随机选取聚类中心
根据当前聚类中心,利用选定的度量方式,分类所有样本点
计算当前每一类的样本点的均值,作为下一次迭代的聚类中心
计算下一次迭代的聚类中心与当前聚类中心的差距
如4中的差距小于给定迭代阈值时,迭代结束。反之,至2继续下一次迭代
1.2 度量方式
根据聚类中心,将所有样本点分为最相似的类别。这需