上传者: 38685832
|
上传时间: 2021-02-24 09:08:41
|
文件大小: 13.45MB
|
文件类型: PDF
多模光纤是一种厚散射介质,当目标图像经过多模光纤传输时将形成多种模式耦合,从而在光纤的输出端生成散斑图案。基于深度学习对多模光纤成像进行复原,解决了厚散射介质成像失真的问题。采用DenseUnet,并以散斑图样作为模型的输入来重建目标图像。DenseUnet模型采用融合机制加深了网络的深度,提高了重建的准确性,并具有很好的鲁棒性。实验结果表明,DenseUnet可以很好地对具有不同长度的多模光纤产生的散斑图像进行重建。