基于深度神经网络的少样本学习综述

上传者: 38675967 | 上传时间: 2023-02-24 00:24:12 | 文件大小: 1.56MB | 文件类型: PDF
如何从少数训练样本中学习并识别新的类别对于深度神经网络来说是一个具有挑战性的问题。针对如何解决少样本学习的问题,全面总结了现有基于深度神经网络的少样本学习方法,涵盖了方法所用模型、数据集及评估结果等各个方面。具体地,针对基于深度神经网络的少样本学习方法,提出将其分为数据增强方法、迁移学习方法、度量学习方法和元学习方法四种类别;对于每个类别,进一步将其分为几个子类别,并且在每个类别与方法之间进行一系列比较,以显示各种方法的优劣和各自的特点。最后强调了现有方法的局限性,并指出了少样本学习研究领域未来的研究方向。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明