rbf预测matlab代码-SSVM-demo:SSVM演示

上传者: 38674616 | 上传时间: 2023-05-13 23:09:00 | 文件大小: 3.14MB | 文件类型: ZIP
rbf预测数学代码平滑支持向量机工具箱 介绍 SSVM工具箱是Matlab中的平滑支持向量机的实现。 SSVM是传统SVM的重新构造,可以通过快速的Newton-Armijo算​​法解决。 此外,选择一个好的参数设置以在学习任务中获得更好的性能是一个重要的问题。 我们还提供自动模型选择工具,以帮助用户获得良好的参数设置。 现在,SSVM工具箱包括用于分类和自动的工具。 主要特征 解决分类()和回归()问题 支持线性,多项式和径向基核 提供带有RBF内核的SSVM和SSVR的自动模型选择 通过使用精简内核(RSVM)可以处理大规模问题 提供交叉验证评估 使用正则化最小二乘法提供零以外的替代初始点 下载SSVM工具箱 资料格式 SSVM工具箱是在Matlab中实现的。 使用可以加载到Matlab中的数据格式。 实例由矩阵(实例的行和变量的列)表示,标签(1或-1)或响应由列向量表示。 用于分类 回归 以下是一些样本数据集。 代码用法 SSVM工具箱包含三个主要功能:用于支持向量机训练的ssvm_train,用于支持向量机预测的ssvm_predict和用于自动模型选择的芙蓉。 ssvm_t

文件下载

资源详情

[{"title":"( 53 个子文件 3.14MB ) rbf预测matlab代码-SSVM-demo:SSVM演示","children":[{"title":"SSVM-demo-main","children":[{"title":"src","children":[{"title":"SSVMtoolbox","children":[{"title":"matlab","children":[{"title":"ssvm_train.m <span style='color:#111;'> 15.70KB </span>","children":null,"spread":false},{"title":"pendigits.mat <span style='color:#111;'> 283.87KB </span>","children":null,"spread":false},{"title":"KSIR.m <span style='color:#111;'> 3.79KB </span>","children":null,"spread":false},{"title":"hibiscus.m <span style='color:#111;'> 13.85KB </span>","children":null,"spread":false},{"title":"SSVM.m <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"svmpredict.mexw32 <span style='color:#111;'> 32.00KB </span>","children":null,"spread":false},{"title":"KFDA.m <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"KPCA.m <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"KFDA_predict.m <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"code_usage.m <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"svmtrain.mexw32 <span style='color:#111;'> 64.00KB </span>","children":null,"spread":false},{"title":"scale.m <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"KGaussian.m <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"SSVR.m <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"read_sparse.mexw32 <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"iris.mat <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"ssvm_predict.m <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"srsplit.m <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false}],"spread":false},{"title":"python","children":[{"title":"trainer.py <span style='color:#111;'> 14.05KB </span>","children":null,"spread":false},{"title":"tuning.py <span style='color:#111;'> 10.39KB </span>","children":null,"spread":false},{"title":"SSVM-Python.py <span style='color:#111;'> 79B </span>","children":null,"spread":false},{"title":"predictor.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"split.py <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false},{"title":"kernel.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"§§§ÂREADME.txt <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"kernel.cpython-38.pyc <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"SSVM.cpython-38.pyc <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"trainer.cpython-38.pyc <span style='color:#111;'> 8.14KB </span>","children":null,"spread":false},{"title":"split.cpython-38.pyc <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.txt <span style='color:#111;'> 5.05KB </span>","children":null,"spread":false},{"title":"load.py <span style='color:#111;'> 840B </span>","children":null,"spread":false},{"title":"SSVM.py <span style='color:#111;'> 8.30KB </span>","children":null,"spread":false}],"spread":false},{"title":"r","children":[{"title":"How to Use the R Version of SSVM Toolbox.pdf <span style='color:#111;'> 348.16KB </span>","children":null,"spread":false},{"title":"KGaussian.R <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"hibiscus.R <span style='color:#111;'> 7.59KB </span>","children":null,"spread":false},{"title":"Final_Test.RData <span style='color:#111;'> 24.83KB </span>","children":null,"spread":false},{"title":"srsplit.R <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"SSVM.R <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false},{"title":"ssvm_predict.R <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"ssvm_train.R <span style='color:#111;'> 9.31KB </span>","children":null,"spread":false},{"title":"scale.R <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"SSVR.R <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"plot.R <span style='color:#111;'> 589B </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"SSVM_M.m <span style='color:#111;'> 6.46KB </span>","children":null,"spread":false},{"title":"SSVR_M.m <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false}],"spread":true},{"title":"paper","children":[{"title":"SSVR_TKDE.pdf <span style='color:#111;'> 636.55KB </span>","children":null,"spread":false},{"title":"ssvm.pdf <span style='color:#111;'> 379.39KB </span>","children":null,"spread":false},{"title":"UD4SVM013006.pdf <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 8.54KB </span>","children":null,"spread":false},{"title":"image","children":[{"title":"ssvm_1.png <span style='color:#111;'> 53.40KB </span>","children":null,"spread":false},{"title":"ssvm_2.png <span style='color:#111;'> 58.53KB </span>","children":null,"spread":false}],"spread":true},{"title":".vscode","children":[{"title":"settings.json <span style='color:#111;'> 103B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明