数据融合matlab代码-CepsNET:网络

上传者: 38670949 | 上传时间: 2022-05-08 18:51:45 | 文件大小: 1.06MB | 文件类型: ZIP
数据融合matlab代码考虑融合倒频谱特征的加性和卷积失真的心音异常检测 我们建议使用Mel-FerequencyCepstral系数(MFCC)及其变体的融合作为2D残留神经网络体系结构的输入,以同时解决通道和加性噪声失真的问题。 听诊器的参数模型 多个倒谱特性 银行 日志库 mfcc_26 mfcc_13 fbank_log-fbank fbank_mfcc_13 log-fbank_mfcc_13 fbank_log-fbank_mfcc_13 mfcc_13_d mfcc_13_dd 拟议建筑模型 实验结果 多次培训的验证分数 域平衡培训(DBT)的后果 要求 的Python 3.8.5 Matlab 2017b 安装 git clone https://github.com/FarhatBuet14/CepsNET.git cd CepsNET/codes pip install -r requirements.txt 怎么跑 *数据准备 首先从这里下载数据文件夹将(不包括在提供的数据文件夹中)放置在data / physionet / training文件夹内的相应文件夹中

文件下载

资源详情

[{"title":"( 58 个子文件 1.06MB ) 数据融合matlab代码-CepsNET:网络","children":[{"title":"CepsNET-main","children":[{"title":".gitignore <span style='color:#111;'> 168B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"codes","children":[{"title":"validation.py <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"prepare_cepstralFeature.py <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":"Springer_pi_vector.mat <span style='color:#111;'> 197B </span>","children":null,"spread":false},{"title":"extract_segments.m <span style='color:#111;'> 6.39KB </span>","children":null,"spread":false},{"title":"BalancedDataGenerator.py <span style='color:#111;'> 41.22KB </span>","children":null,"spread":false},{"title":"matlabUtils","children":[{"title":"default_Springer_HSMM_options.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"getDWT.m <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"Hilbert_Envelope.m <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"Homomorphic_Envelope_with_Hilbert.m <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"getSpringerPCGFeatures.m <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"get_states_python.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"runSpringerSegmentationAlgorithmpython.m <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"butterworth_high_pass_filter.m <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"viterbi_Springer.c <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"next.sh <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"prepare-entry.sh <span style='color:#111;'> 794B </span>","children":null,"spread":false},{"title":"setup.sh <span style='color:#111;'> 445B </span>","children":null,"spread":false},{"title":"feed_forward_cnn.m <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"expand_qt.m <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"schmidt_spike_removal.m <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"extractFeaturesFromHsIntervals.m <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"getHeartRateSchmidt.m <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"runSpringerSegmentationAlgorithm.m <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"get_duration_distributions.m <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false},{"title":"normalise_signal.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"classifyFromHsIntervals.m <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"get_PSD_feature_Springer_HMM.m <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"butterworth_low_pass_filter.m <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"LICENSE.txt <span style='color:#111;'> 34.30KB </span>","children":null,"spread":false},{"title":"score2016Challenge.m <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"challenge_old.m <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"challenge.m <span style='color:#111;'> 15.33KB </span>","children":null,"spread":false},{"title":"viterbiDecodePCG_Springer.m <span style='color:#111;'> 14.92KB </span>","children":null,"spread":false},{"title":"generateValidationSet.m <span style='color:#111;'> 2.99KB </span>","children":null,"spread":false},{"title":"challenge_first_submission.m <span style='color:#111;'> 13.24KB </span>","children":null,"spread":false}],"spread":false},{"title":"train.py <span style='color:#111;'> 9.32KB </span>","children":null,"spread":false},{"title":"CSVLogger.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"validation.ipynb <span style='color:#111;'> 226.29KB </span>","children":null,"spread":false},{"title":"Springer_B_matrix.mat <span style='color:#111;'> 384B </span>","children":null,"spread":false},{"title":"Springer_total_obs_distribution.mat <span style='color:#111;'> 347B </span>","children":null,"spread":false},{"title":"testbench.ipynb <span style='color:#111;'> 10.40KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 8.25KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 473B </span>","children":null,"spread":false},{"title":"data_fold.m <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"dataLoader.py <span style='color:#111;'> 5.99KB </span>","children":null,"spread":false},{"title":"dataholder.py <span style='color:#111;'> 17.17KB </span>","children":null,"spread":false}],"spread":false},{"title":"images","children":[{"title":"Result_Table.png <span style='color:#111;'> 136.77KB </span>","children":null,"spread":false},{"title":"MFCC_flow.png <span style='color:#111;'> 81.47KB </span>","children":null,"spread":false},{"title":"model architechture.png <span style='color:#111;'> 203.80KB </span>","children":null,"spread":false},{"title":"tsne.png <span style='color:#111;'> 268.53KB </span>","children":null,"spread":false},{"title":"signal.png <span style='color:#111;'> 146.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"placeholder.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"logs","children":[{"title":"placeholder.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明