基于双通道特征融合的WPOS-GRU专利分类方法

上传者: 38670707 | 上传时间: 2022-03-08 10:02:14 | 文件大小: 1.34MB | 文件类型: -
为提高专利文本自动分类的效率和准确度,提出一种基于双通道特征融合的WPOS-GRU(word2vec and part of speech gated recurrent unit)专利文本自动分类方法。首先获取专利摘要文本,并进行清洗和预处理;然后对专利文本进行词向量表示和词性标注,并将专利文本分别映射为word2vec词向量序列和POS词性序列;最后使用两种特征通道训练WPOS-GRU模型,并对模型效果进行实验分析。通过对比传统专利分类方法和单通道专利分类方法,双通道特征融合的WPOS-GRU专利分类方法提高了分类效果。提出的方法节省了大量的人力成本,提高了专利文本分类的准确度,更能满足大量专利文本分类任务自动化高效率的需要。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明