基于贝叶斯正则化深度信念网络的电力变压器故障诊断方法

上传者: 38670531 | 上传时间: 2021-12-29 17:11:43 | 文件大小: 2.11MB | 文件类型: -
传统的深度信念网络规模大、难度大、训练时间长,导致其故障诊断的时间较长。针对该问题,提出了一种基于贝叶斯正则化深度信念网络的电力变压器故障诊断方法。采用贝叶斯正则化算法改进传统深度信念网络的训练性能函数,在保证网络精度的同时快速提高计算速度,从而提高网络的收敛速度。实验结果表明,经过贝叶斯正则化改进后,深度信念网络训练的泛化能力得到了提高,同时故障诊断的准确率也得到了保证。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明