上传者: 38669729
|
上传时间: 2023-02-25 08:54:26
|
文件大小: 1.76MB
|
文件类型: PDF
当提供不适当的参数或将其应用于由具有不同形状,大小和密度的聚类组成的数据集时,大多数聚类算法将变得无效。 为了缓解这些不足,我们提出了一种新颖的拆分合并层次聚类方法,其中采用最小生成树(MST)和基于MST的图来指导拆分和合并过程。 在分割过程中,选择基于MST的图中具有高度的顶点作为初始原型,并使用K均值来分割数据集。 在合并过程中,将对子组对进行过滤,并且仅考虑相邻对。 所提出的方法除了簇数以外不需要任何参数。 实验结果证明了其在合成和真实数据集上的有效性。