基于YOLO改进残差网络结构的车辆检测方法

上传者: 38664612 | 上传时间: 2021-07-07 16:17:05 | 文件大小: 715KB | 文件类型: PDF
针对车辆检测任务,设计更高效、精确的网络模型是行业研究的热点,深层网络模型具有比浅层网络模型更好的特征提取能力,但构建深层网络模型时将导致梯度消失、模型过拟合等问题,应用残差网络结构可以缓解此类问题。基于YOLO算法,改进残差网络结构,加深网络层数,设计了一种含有68个卷积层的卷积神经网络模型,同时对输入图像进行预处理,保证目标在图像上不变形失真,最后在自定义的车辆数据集上对模型进行训练与测试,并将实验结果与YOLOV3模型进行对比,实验表明,本文设计的模型检测精准度(AP)达90.63%,较YOLOV3提高了4.6%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明