svm算法手写matlab代码-Machine-Learning-Code:此存储库是一些代码,其中打包了机器学习中的一些常用方法

上传者: 38660579 | 上传时间: 2021-05-25 18:03:37 | 文件大小: 63KB | 文件类型: ZIP
svm算法手写matlab代码机器学习代码 该存储库是一些代码,其中打包了机器学习中常用的方法。 我将进行后续更新。 您可以从源代码中获取特定的用法详细信息。 这是有关每个文件夹中主要工作的一些简要信息。 1. Gan: Generate handwritten digital pictures through Gan achieved by tensorflow1. 2. Cnn: Recognize digital verification code through convolutional neural network achieved by tensorflow1. u can use it to solve the obstacle of the verification code to the automated crawler. note that i apply the python code from web for generate verification code as training/testing dataset. 3. linear_model: Li

文件下载

资源详情

[{"title":"( 34 个子文件 63KB ) svm算法手写matlab代码-Machine-Learning-Code:此存储库是一些代码,其中打包了机器学习中的一些常用方法","children":[{"title":"Machine-Learning-Code-master","children":[{"title":"ann_by_matlab","children":[{"title":"softmax.m <span style='color:#111;'> 88B </span>","children":null,"spread":false},{"title":"read_mnist_labels.m <span style='color:#111;'> 298B </span>","children":null,"spread":false},{"title":"ANN.m <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"readint32.m <span style='color:#111;'> 200B </span>","children":null,"spread":false},{"title":"read_mnist_images.m <span style='color:#111;'> 486B </span>","children":null,"spread":false}],"spread":true},{"title":"KMeans++","children":[{"title":"KMeans.py <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false}],"spread":true},{"title":"LHalf","children":[{"title":"LHalf.py <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false},{"title":"energy_predict.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"linear_model","children":[{"title":"lasso_test.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"coordinate_descent.R <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"Ridge.R <span style='color:#111;'> 1014B </span>","children":null,"spread":false},{"title":"Multiple_test.py <span style='color:#111;'> 5.65KB </span>","children":null,"spread":false},{"title":"Multiple_linear_regression.py <span style='color:#111;'> 23.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"SVM","children":[{"title":"support_vector_machine.py <span style='color:#111;'> 18.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"xgboost","children":[{"title":"BaseTree.py <span style='color:#111;'> 12.73KB </span>","children":null,"spread":false},{"title":"LossFunc.py <span style='color:#111;'> 676B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 355B </span>","children":null,"spread":false},{"title":"XGBModel.py <span style='color:#111;'> 10.02KB </span>","children":null,"spread":false},{"title":"XGBoost_test.py <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"LeastSquareLoss.py <span style='color:#111;'> 245B </span>","children":null,"spread":false}],"spread":true},{"title":"DecisionTree","children":[{"title":"DecisionTree_test.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"Cart.py <span style='color:#111;'> 10.89KB </span>","children":null,"spread":false},{"title":"CartTest.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"treePlotter.py <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"DecisionTree.py <span style='color:#111;'> 13.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"NaiveBayes","children":[{"title":"naive_bayes.py <span style='color:#111;'> 12.03KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"naive_bayes_test.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"rejection_sampling","children":[{"title":"rejection_sampling.py <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"Gan","children":[{"title":"gan.py <span style='color:#111;'> 7.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"CNN","children":[{"title":"captcha_pic_builder.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"identification_codes.py <span style='color:#111;'> 7.57KB </span>","children":null,"spread":false},{"title":"input_data.py <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明