基于卷积神经网络的手势识别算法研究

上传者: 38658568 | 上传时间: 2022-02-23 10:24:57 | 文件大小: 1.66MB | 文件类型: -
基于实现小样本数据集下手势识别的目的,采用了深度卷积神经网络GoogLeNet模型以及PNN神经网络进行分类,同时结合了迁移学习的方法将深度学习模型进行迁移而构建所用模型。用公共数据集Keck Gesture进行实验,通过对数据集图像进行简单的图像预处理,使得图像特征更为明显,将预处理后的图像作为网络输入进行手势识别实验。经实验验证,该方法在该数据上平均准确率达到了99%以上,而且识别速度较快,达到了10帧/s,基本能满足实时性要求。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明