图像的均方误差的matlab代码-Recurrent-Attention-Model:循环注意力模型

上传者: 38656462 | 上传时间: 2021-11-09 20:08:26 | 文件大小: 24.2MB | 文件类型: -
图像的均方误差的matlab代码经常注意模型 介绍 在过去的十年中,神经网络和深度学习在从计算机视觉到自然语言处理的各种应用中得到了快速发展。 随着计算的巨大改进,人们可以训练庞大而深入的神经网络来完成某些特定任务,例如Imagenet中的图像分类,通过RNN进行图像字幕,语义分割,对象检测,文本生成等。 现在,存在许多不同的神经网络功能。 但是,传统的CNN或多或少都面临着相同的问题:计算复杂性,可伸缩性,鲁棒性。 同时,神经网络也被引入到强化学习中,并在游戏中产生了巨大的成功。 里程碑是和。 这些成就使研究人员考虑了将强化学习算法与CNN结合以实现“注意力”机制的可能性。 这是循环注意力模型的动机,它是CNN,RNN和REINFORCE算法的混合体。 原始的创作论文为,在MNIST数据集中表现出色。 该模型可以大大减少计算量,并忽略图像中的混乱情况。 我花了很多时间和精力研究并在张量流中补充了该模型。 这就是该存储库的用途。 模型 本文的模型如下: 图例: 瞥见传感器:给定输入图像,瞥见位置和标度号以提取视网膜表示。 瞥见网络:两个完全连接的层,可在给定输入图像和瞥见位置的情况下输

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明