机器学习数学基础之微积分与概率论

上传者: 38656395 | 上传时间: 2023-05-11 10:52:17 | 文件大小: 403KB | 文件类型: PDF
机器学习数学基础之微积分与概率论1. 导数与梯度下降1.1 方向导数1.2 在机器学习的应用2. 基本概率论2.1 条件概率2.2 全概率公式2.3 贝叶斯公式2.4 随机变量2.5 期望2.6 方差3. 分布3.1 伯努利分布3.2 二项分布3.3 高斯分布3.4 泊松分布 (本文为学习总结笔记,如有雷同请无视) 1. 导数与梯度下降 1.1 方向导数 梯度下降法会引起局部最优值的可能。 1.2 在机器学习的应用 1、初始化一个w值 2、传入数据集,进行对w的调整 3、最后输出一个最优的w,解决了识别的任务(有可能是局部最优) 2. 基本概率论 人工智能主要对识别的结果进行概率分析,根据概

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明