利用PCA进行深度学习图像特征提取后的降维研究

上传者: 38656142 | 上传时间: 2021-12-30 14:05:02 | 文件大小: 894KB | 文件类型: -
深度学习是当前人工智能领域广泛使用的一种机器学习方法.深度学习对数据的高度依赖性使得数据需要处理的维度剧增,极大地影响了计算效率和数据分类性能.本文以数据降维为研究目标,对深度学习中的各种数据降维方法进行分析.在此基础上,以Caltech 101图像数据集为实验对象,采用VGG-16深度卷积神经网络进行图像的特征提取,以PCA主成分分析方法为例来实现高维图像特征数据的降维处理.在实验阶段,采用欧氏距离作为相似性度量来检验经过降维处理后的精度指标.实验证明:当提取VGG-16神经网络fc3层的4096维特征后,使用PCA法将数据维度降至64维,依然能够保持较高的特征信息.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明