poisson1Dneumann(F,​x0,xEnd):使用 Neumann 边界条件求解一维泊松方程 d2U/dX2 = F-matlab开发

上传者: 38653385 | 上传时间: 2022-05-22 17:17:09 | 文件大小: 2KB | 文件类型: ZIP
函数 u = poisson1Dneumann(F,x0,xEnd) %POISSON1DNUEMANN用Neumann求解一维泊松方程d2U / dX2 = F % 边界条件 dUdX = 0 在 X = 0 和 X = L。 % u = poisson1Dneumann(F,x0,xEnd) % % u:解向量% F:右侧向量% x0:域的起始坐标。 % xEnd:域的结束坐标。 % 检查兼容性xInt = linspace(x0,xEnd,length(F)); fInt = trapz(xInt,F); 如果 (fInt > 0.0001) || (fInt < -0.0001) disp('不满足兼容条件'); 结尾% 解决方案N = 长度(F); dx = (xEnd - x0) / (N - 1); b = dct(F); m = (0:length(b)-1)'; a

文件下载

资源详情

[{"title":"( 1 个子文件 2KB ) poisson1Dneumann(F,​x0,xEnd):使用 Neumann 边界条件求解一维泊松方程 d2U/dX2 = F-matlab开发","children":[{"title":"poisson1Dneumann.zip <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明