上传者: 38651540
|
上传时间: 2025-04-22 20:03:23
|
文件大小: 838KB
|
文件类型: PDF
光纤温度检测技术是近些年发展起来的一项新技术,由于光纤本身具有电绝缘性好、不受电磁干扰、无火花、能在易燃易爆的环境中使用等优点而越来越受到人们的重视,各种光纤温度传感器发展极为迅速。目前研究的光纤温度传感器主要利用相位调制、热辐射探测、荧光衰变、半导体吸收、光纤光栅等原理。其中半导体吸收式光纤温度传感器作为一种强度调制的传光型光纤传感器,除了具有光纤传感器的一般优点之外,还具有成本低、结构简单、可靠性高等优点,非常适合于输电设备和石油井下等现场的温度监测,近年来获得了广泛的研究。但是目前的研究还存在一些问题,如系统模型不完善,基础理论尚不系统,产品化困难等。本文对这种传感器进行了详细研究,建立了系统的数学模型,并通过仿真和实验对系统特性和实际应用的难点进行了分析。
半导体式光纤温度传感器是光纤温度检测技术的一种重要应用,它基于半导体材料的吸收特性来实现温度的精确测量。光纤传感器因其独特的优点,如电绝缘性好、抗电磁干扰、无火花安全特性,使其在电力、石油等领域的温度监控中具有广泛应用潜力。半导体吸收式传感器以其成本低、结构简单和高可靠性脱颖而出。
半导体吸收式光纤温度传感器的工作原理是利用半导体材料(如GaAs)的本征吸收特性。当特定波长的光通过半导体时,会发生吸收现象,吸收强度与温度有关。普朗克常数h和频率v的关系揭示了吸收的频率界限vg,对应特定的本征吸收波长λg。对于直接跃迁型半导体如GaAs,其吸收波长会随温度变化,这一特性可用于温度传感。
系统建模中,传感器通常包括光源、光纤、探头、光电转换器等组件。光源一般选用具有适当光谱宽度的LED,例如本文中的880nm GaAlAs LED,其光谱覆盖吸收波长λT的变化范围。探头包含半导体材料,如120 μm厚的GaAs片,其透射率随温度变化,可以通过近似为三段直线的函数表达。光电二极管则将接收到的光信号转化为电信号,其光谱响应曲线可用指数分布的函数描述。
在实验研究中,搭建的系统平台包括光源、半导体片、光纤、光电二极管和温度可控的变温箱。选用的元件参数如光电二极管的光谱响应特性、光纤类型等,都是为了确保传感器性能的稳定和准确。通过实验,可以验证理论模型的正确性,分析传感器在不同温度下的响应特性,解决实际应用中的难题,如温度分辨率、稳定性、线性度等。
半导体式光纤温度传感器的建模、仿真与实验涉及光学、固体物理、电子学等多个领域,是多学科交叉的复杂系统。通过深入研究和实验验证,可以不断优化传感器性能,推动其在工业监测、安全防护等领域的实际应用。