图像矩阵matlab代码-KerasDeepWalk:通过一组随机游走为大型图形构建单词嵌入。模型学习由Keras支持,后者现在支持Tenso

上传者: 38650629 | 上传时间: 2021-08-30 16:41:41 | 文件大小: 76.38MB | 文件类型: ZIP
图像矩阵matlab代码TheanoDeepWalk Brian Perozzi在Theano上进行的DeepWalk,可以对在多个GPU上的嵌入进行分布式培训。 同样,整个代码在后台使用Keras来构建模型的灵活版本。一旦Keras现在支持TensorFlow作为后端,您就可以使用此Google产品来训练如何嵌入图形。 也在计划中: 使用图集通过多模式辅助信息来增强基于Deepwalk的嵌入(使用暹罗网络) 多峰图形嵌入(文本,图形,图形拓扑等) DeepWalk使用简短的随机游走来学习图形中顶点的表示形式。 用法 示例用法$deepwalk --input example_graphs/karate.adjlist --output karate.embeddings --window-size=15 --representation-size=128 --workers=8 --number-walks=80 --input:input_filename 1. ``--format adjlist`` for an adjacency list, e.g:: 1 2 3 4 5

文件下载

资源详情

[{"title":"( 84 个子文件 76.38MB ) 图像矩阵matlab代码-KerasDeepWalk:通过一组随机游走为大型图形构建单词嵌入。模型学习由Keras支持,后者现在支持Tenso","children":[{"title":"KerasDeepWalk-master","children":[{"title":"setup.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"keras_blogcatalog.emb <span style='color:#111;'> 16.03MB </span>","children":null,"spread":false},{"title":"karate.embeddings <span style='color:#111;'> 20.36KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 113B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"deepwalk.egg-info","children":[{"title":"top_level.txt <span style='color:#111;'> 9B </span>","children":null,"spread":false},{"title":"SOURCES.txt <span style='color:#111;'> 589B </span>","children":null,"spread":false},{"title":"PKG-INFO <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false},{"title":"not-zip-safe <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"entry_points.txt <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":"dependency_links.txt <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"MANIFEST.in <span style='color:#111;'> 243B </span>","children":null,"spread":false},{"title":"build","children":[{"title":"lib.linux-x86_64-2.7","children":[{"title":"deepwalk","children":[{"title":"__init__.py <span style='color:#111;'> 117B </span>","children":null,"spread":false},{"title":"skipgram.py <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 7.12KB </span>","children":null,"spread":false},{"title":"walks.py <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"__main__.py <span style='color:#111;'> 5.68KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"dist","children":[{"title":"deepwalk-1.0.1-py2.7.egg <span style='color:#111;'> 20.66KB </span>","children":null,"spread":false}],"spread":true},{"title":"deepwalk.bib <span style='color:#111;'> 738B </span>","children":null,"spread":false},{"title":"HISTORY.rst <span style='color:#111;'> 255B </span>","children":null,"spread":false},{"title":"skipgram_word_embeddings.py <span style='color:#111;'> 7.22KB </span>","children":null,"spread":false},{"title":"setup.cfg <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"example_graphs","children":[{"title":"blogcatalog.orbits.normed.headless <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"normalize.py <span style='color:#111;'> 745B </span>","children":null,"spread":false},{"title":"blogcatalog.embeddings.to.orbits <span style='color:#111;'> 8.24MB </span>","children":null,"spread":false},{"title":"blogcatalog.edgelist <span style='color:#111;'> 3.11MB </span>","children":null,"spread":false},{"title":"blogcatalog.weights.edgelist <span style='color:#111;'> 4.62MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.scaled.sparsified <span style='color:#111;'> 25.92MB </span>","children":null,"spread":false},{"title":"karate.adjlist <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"blogcatalog.forline <span style='color:#111;'> 7.91MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.weights.ord2 <span style='color:#111;'> 6.03MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.scaled <span style='color:#111;'> 6.04MB </span>","children":null,"spread":false},{"title":"dense_net.tgz <span style='color:#111;'> 11.71MB </span>","children":null,"spread":false},{"title":"theano_test.py <span style='color:#111;'> 633B </span>","children":null,"spread":false},{"title":"blogcatalog.line.NOweights <span style='color:#111;'> 3.75MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.scaled.catenated.striped <span style='color:#111;'> 12.01MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.noweights <span style='color:#111;'> 6.03MB </span>","children":null,"spread":false},{"title":"blogcatalog.embeddings <span style='color:#111;'> 6.02MB </span>","children":null,"spread":false},{"title":"blogcatalog.scaled <span style='color:#111;'> 3.86MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.weights.ord1 <span style='color:#111;'> 6.04MB </span>","children":null,"spread":false},{"title":"blogcatalog.orbits.normed <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"compute_weights_for_LINE.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.weights.ord1.norm <span style='color:#111;'> 9.91MB </span>","children":null,"spread":false},{"title":"blogcatalog.mat <span style='color:#111;'> 1.20MB </span>","children":null,"spread":false},{"title":"blogcatalog.orbits <span style='color:#111;'> 853.52KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 830B </span>","children":null,"spread":false},{"title":"blogcatalog.embeddings.sorted.orbits.catenated <span style='color:#111;'> 8.24MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.scaled.ord2 <span style='color:#111;'> 6.04MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.scaled.catenated <span style='color:#111;'> 12.01MB </span>","children":null,"spread":false},{"title":"scoring.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"blogcatalog.embeddings.sorted <span style='color:#111;'> 6.02MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.scaled.sparsified_dict <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false},{"title":"scoring_orbits.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.scaled.ord1 <span style='color:#111;'> 6.04MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.weights.ord2.norm <span style='color:#111;'> 9.91MB </span>","children":null,"spread":false},{"title":"p2p-Gnutella08.edgelist <span style='color:#111;'> 210.13KB </span>","children":null,"spread":false},{"title":"blogcatalog.line <span style='color:#111;'> 6.03MB </span>","children":null,"spread":false},{"title":"blogcatalog.emb.weights.joint <span style='color:#111;'> 19.77MB </span>","children":null,"spread":false},{"title":"catenate_emb.py <span style='color:#111;'> 259B </span>","children":null,"spread":false}],"spread":false},{"title":"README.rst <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"__init__.py <span style='color:#111;'> 23B </span>","children":null,"spread":false},{"title":"test_deepwalk.py <span style='color:#111;'> 387B </span>","children":null,"spread":false}],"spread":false},{"title":"deepwalk","children":[{"title":"__init__.py <span style='color:#111;'> 117B </span>","children":null,"spread":false},{"title":"graph.pyc <span style='color:#111;'> 12.51KB </span>","children":null,"spread":false},{"title":"skipgram.py <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"original__main__.py <span style='color:#111;'> 5.68KB </span>","children":null,"spread":false},{"title":"graph.py <span style='color:#111;'> 7.73KB </span>","children":null,"spread":false},{"title":"walks.py <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"__main__.py <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"skipgram.pyc <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false}],"spread":false},{"title":"AUTHORS.rst <span style='color:#111;'> 209B </span>","children":null,"spread":false},{"title":"CONTRIBUTING.rst <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"Makefile <span style='color:#111;'> 6.62KB </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 504B </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 8.21KB </span>","children":null,"spread":false},{"title":"history.rst <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"authors.rst <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"installation.rst <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"make.bat <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"readme.rst <span style='color:#111;'> 26B </span>","children":null,"spread":false},{"title":"usage.rst <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"contributing.rst <span style='color:#111;'> 32B </span>","children":null,"spread":false}],"spread":false},{"title":"tox.ini <span style='color:#111;'> 182B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明