SU(5)×T13纹理中的三重最大混合

上传者: 38643269 | 上传时间: 2024-03-01 18:08:31 | 文件大小: 610KB | 文件类型: PDF
我们将最近提出的用于非对称纹理的SU(5)×T13模型扩展到向上的夸克和跷跷板扇区。 分层的夸克夸克质量是由高维算子生成的,这些维算子涉及家庭-单数希格斯,规范-单数家庭和矢量样信使。 复数-三倍最大跷跷板混合源于最少数量的家庭的真空结构,导致跷跷板公式的Yukawa和Majorana矩阵之间对齐。 引入四个右旋中微子,可以得到轻中微子质量的正常排序,其中mν1= 27.6 meV,mν2= 28.9 meV,mν3= 57.8 meV。 它们的总和几乎使普朗克的宇宙学上限(120 meV)饱和。 右旋中微子质量用两个参数表示,用于特定的家庭真空准直选择。 我们预测CP Jarlskog-Greenberg不变量为| J | = 0.028,与当前的粒子数据组(PDG)估计一致,而Majorana不变量| I1 | = 0.106和| I2 | = 0.011。 模型参数的符号歧义性导致不变质量参数|mββ|的两种可能性:13.02或25.21 meV,均在最严格的实验上限(61–165 meV)的数量级内。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明