一种基于深度学习的机械臂分拣方法

上传者: 38640072 | 上传时间: 2021-07-28 16:41:19 | 文件大小: 9.15MB | 文件类型: PDF
针对分拣过程中视觉系统识别复杂物体时速度慢、对环境变化适应性不足的问题,提出一种基于轻量型卷积神经网络的机械臂快速分拣方法。该方法首先使用基于轻量型卷积神经网络的MobileNet-SSD算法对图像中的目标物体进行检测,获取目标类别和位置信息;然后根据检测输出结果对图像进行预处理和边缘检测,最终得到校正后的定位结果。在PROBOT Anno机械臂平台上进行分拣实验,实验结果表明,相比于传统的图像处理方法,提出的方法能对复杂目标物体实现快速的检测和定位,对于目标形态和环境的多样性来说具有更好的鲁棒性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明