上传者: 38639237
|
上传时间: 2023-03-26 18:45:27
|
文件大小: 1.08MB
|
文件类型: PDF
利用加速度信号测量位移是油田抽油井光杆位移测量的主要方法,而加速度信号的随机噪声和趋势项是影响测量精度的主要因素,本文提出了一种基于学习的实时消噪和剔除趋势项方法。学习时先获取一段时间的加速度信号,再通过时间序列分析技术得出ARIMA模型及其参数,最后基于FFT变换的Rife-Jane频率估计方法求出加速度信号的周期;在线实时消噪和剔除趋势项方法是基于学习阶段所得模型参数,运用卡尔曼滤波技术消除加速度信号随机噪声;按周期两次积分得到光杆位移,用加窗递推最小二乘法在线消除趋势项。通过抽油机半实物仿真平台测试和分析加速度信号,结果表明,该方法有效地去除了加速度信号中的噪声和趋势项,极大地提高了位移的测量精度。