基于GAN-CNN联合网络的复杂产品费用预测

上传者: 38638163 | 上传时间: 2021-12-06 19:45:25 | 文件大小: 1.65MB | 文件类型: -
研究小样本情况下,GAN在复杂产品费用预测上的应用。针对小样本情况下传统神经网络难以训练、预测准确度不高的问题,采用GAN网络与CNN网络结合的方法,借助GAN判别网络强大的特征提取能力,提取出样本的浅层特征,并将特征共享给CNN预测网络。CNN预测网络与判别网络共同约束生成网络,从而训练整个神经网络,最后以CNN预测网络进行复杂产品费用预测。以导弹作为复杂产品的样例进行实验,经实验论证,GAN-CNN联合网络预测的准确性约为95%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明