jupyter使用Python编程—-使用梯度下降法求多元函数的极值和系数并与最小二乘法进行比较

上传者: 38631331 | 上传时间: 2021-12-07 14:07:04 | 文件大小: 250KB | 文件类型: -
使用梯度下降法求多元函数的系数并与最小二乘法进行比较梯度下降法的原理和概念梯度下降法求解多元函数的极值梯度下降法求解多元函数的系数最小二乘法求解多元函数的系数比较和总结 梯度下降法的原理和概念 偏导数:就是对函数的两个未知数求微分 然后得到的函数 例如一个函数为y=x12+x22+2x1x2 d(y)/d(x1)=2×1+2×2 d(y)/d(x2)=2×2+2×1 学习率: 也称为迭代的步长,优化函数的梯度是不断变化的,有时候变化很大,有时候变化很小,所以需要将每次的梯度变化控制在一个合适的范围内。 梯度: 梯度其实就是函数的变化率,在多元函数中,梯度变为了向量,有了变化的方向。 梯度的方向

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明