基于Kmeans-GMM模型的地板块纹理分类算法 (2013年)

上传者: 38631225 | 上传时间: 2021-11-21 09:32:46 | 文件大小: 346KB | 文件类型: -
为解决地板块纹理分类难度大的问题,提出了一种基于Kmeans-GMM模型的地板块纹理分类方法.在阐述混合高斯模型GMM及参数估计算法原理的基础上,采用灰度共生矩阵提取地板块纹理特征,结合Kmeans算法,通过训练得到各类纹理所对应的混合高斯模型GMM的参数,实现对地板块纹理分类.实验结果表明该方法辨识准确率高、识别速度快,优于传统的神经网络分类法以及SVM算法,为地板块纹理分类的研究提供了一个新的思路.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明