RBF网络和贝叶斯分类器融合的人脸识别方法设计

上传者: 38628990 | 上传时间: 2024-05-26 14:50:25 | 文件大小: 295KB | 文件类型: PDF
引言    本文基于人脸图像分块和奇异值压缩,进行RBF 神经网络和贝叶斯分类器融合的设计。将人脸图像本身的灰度分布描述为矩阵,其奇异值特征具有转置不变性、旋转不变性、位移不变性、镜像不变性等诸多重要的性质,进行各种代数和矩阵变换后提取的代数特征是人脸的表征。由于整体图像的奇异值向量反映的是图像整体的统计特征,对细节的描述还不够深入,本文模拟人类识别人脸的模式,在图像分块和加权的基础上,突出待识别人脸的骨骼特征,近似于人类在识别人脸时自动剔除同一人脸的变化部位的差异能力  径向基函数(RBF)网络是一种性能良好的前馈型三层神经网络,具有全局逼近性质和逼近性能,训练方法快速易行,RBF 函数还具

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明