结合纹理特征和深度学习的行人检测算法

上传者: 38618312 | 上传时间: 2021-12-21 13:01:38 | 文件大小: 661KB | 文件类型: -
针对行人检测算法中存在特征鲁棒性差及分类器拟合非线性数据能力弱等问题,提出一种基于纹理特征和深度学习分类算法的行人检测方法.提出一种改进的GSRLBP纹理特征提取算法,提取行人图像的局部纹理特征,通过获取像素点的梯度信息结合GSRLBP算法消除微小扰动对行人特征提取的影响,进一步增强特征提取的鲁棒性.搭建基于深信度网络的深度学习行人样本分类器,利用多层受限波兹曼机搭建分类器输入端和中间层,将行人纹理特征信息逐层转化和传递,实现特征数据的自学习,利用BP神经网络搭建分类器的输出端,实现分类器结构的自优化.研究结果表明,该算法可行、有效,且性能优于经典浅层机器学习行人检测算法.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明