2010年数学建模竞赛A题的讨论

上传者: 38617436 | 上传时间: 2025-08-13 20:29:03 | 文件大小: 251KB | 文件类型: PDF
数学建模竞赛是促进学生综合运用所学的数学理论知识、方法和技能解决实际问题的一种竞赛形式,其目的在于激发学生对数学的兴趣,提高应用数学解决实际问题的能力。2010年的数学建模竞赛A题涉及到储油罐变位情况下的油量与罐容表的标定问题,这不仅考察了参赛者对积分、函数反演、变位识别等相关数学知识的理解,还考察了解决实际工程问题的应用能力。 在讨论2010年数学建模竞赛A题时,作者吴小庆和陈本卫提出,无论储油罐发生横向还是纵向倾斜变位,其罐内油的体积保持不变。这是因为罐体的形状在变位情况下没有发生改变,且在小变位的假设下,不会导致油溢出。因此,油的总体积是关于无变位高度的连续可导的单调增加函数。对于变位的情况,观测到的油位高度可以通过变位参数表达式与无变位高度关联起来。 该问题的关键在于建立罐内储油量与油位高度及变位参数之间的关系。通过运用积分的方法,特别是二重积分,可以推导出无变位时油体积的函数表达式。此外,根据实际检测到的罐体内油量减少后的油位高度,以及变位参数,可以反推出无变位时油位的高度。通过观测高度、变位参数、以及罐体的几何关系,可以建立相应的数学模型来确定变位参数。 在文章中提到的最小二乘法是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。在本问题中,最小二乘法被用来根据观测数据和变位参数来确定罐体变位后油位高度间隔为10厘米的罐容表标定值。 此外,本问题的讨论中还涉及到了变位参数的确定问题,即如何通过罐体的几何形状和变位情况推导出变位参数。具体来说,涉及到的变位参数包括纵向倾斜角度α和横向偏转角度β,这些都是在油罐变位问题中需要精确测量和计算的重要参数。 在建立数学模型时,作者提出的方法还包括了如何从储油量的体积表达式确定变位参数。作者指出,直接根据油的体积表达式来确定变位参数是错误的,因为油的体积与变位参数无关。这一结论对于正确解决储油罐变位问题至关重要。 文章中还提到了关键词应用数学、数学建模竞赛、储油罐变位识别、最小二乘法等,这些都显示了该问题所涉及的知识领域和解决问题的途径。文章最后还附有作者简介,介绍了作者的相关背景信息,例如作者吴小庆是教授、应用数学硕士导师,这一信息有助于了解文章的学术背景和作者的专业资质。 通过对2010年数学建模竞赛A题的讨论,我们可以学习到数学建模在解决实际工程问题中的应用,理解变位识别问题中数学模型的建立与求解方法,并掌握积分计算、函数反演、最小二乘法等关键数学工具的应用。这对于培养学生的实际问题分析能力和解决能力具有重要的指导意义。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明