k-means聚类算法及matlab代码-dataMining:数据挖掘

上传者: 38616139 | 上传时间: 2022-09-16 19:29:47 | 文件大小: 527KB | 文件类型: ZIP
k-means聚类算法及matlab代码 项目名称:数据挖掘课作业 项目组成 1. exp1 实验一 《多源数据集成、清洗和统计》 题目 广州大学某班有同学100人,现要从两个数据源汇总学生数据。第一个数据源在数据库中,第二个数据源在txt文件中,两个数据源课程存在缺失、冗余和不一致性,请用C/C++/Java程序实现对两个数据源的一致性合并以及每个学生样本的数值量化。 两个数据源合并后读入内存,并统计: 学生中家乡在Beijing的所有课程的平均成绩。 学生中家乡在广州,课程1在80分以上,且课程9在9分以上的男同学的数量。(备注:该处做了修正,课程10数据为空,更改为课程9) 比较广州和上海两地女生的平均体能测试成绩,哪个地区的更强些? 学习成绩和体能测试成绩,两者的相关性是多少?(九门课的成绩分别与体能成绩计算相关性) 实验一__目录结构 --data1.xlsx 插入数据库的原始数据 --data2.txt 从文件读入的原始数据 --data3.csv 清洗完毕的数据 --data4.csv 清洗完毕的经过特意处理数据 --insertData.py 插入数据库的完整代码 --

文件下载

资源详情

[{"title":"( 44 个子文件 527KB ) k-means聚类算法及matlab代码-dataMining:数据挖掘","children":[{"title":"dataMining-main","children":[{"title":"exp2","children":[{"title":"exp2.py <span style='color:#111;'> 8.53KB </span>","children":null,"spread":false},{"title":"data3.csv <span style='color:#111;'> 6.72KB </span>","children":null,"spread":false},{"title":"C1成绩直方图.png <span style='color:#111;'> 13.06KB </span>","children":null,"spread":false},{"title":"correlation_matrix .csv <span style='color:#111;'> 274.32KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"exp2.iml <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 196B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 251B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 260B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 239B </span>","children":null,"spread":false},{"title":"vcs.xml <span style='color:#111;'> 183B </span>","children":null,"spread":false}],"spread":true},{"title":"每个点距离最近3个点的ID.txt <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 640B </span>","children":null,"spread":false},{"title":"C1成绩和体能成绩散点图.png <span style='color:#111;'> 18.63KB </span>","children":null,"spread":false},{"title":"归一化矩阵.csv <span style='color:#111;'> 26.38KB </span>","children":null,"spread":false},{"title":"每个点距离从近到远的ID.csv <span style='color:#111;'> 76.81KB </span>","children":null,"spread":false},{"title":"confusion_matrix.png <span style='color:#111;'> 68.80KB </span>","children":null,"spread":false}],"spread":false},{"title":"exp3","children":[{"title":"exp3.py <span style='color:#111;'> 5.31KB </span>","children":null,"spread":false},{"title":"归一化数据:k等于4的聚类.png <span style='color:#111;'> 42.67KB </span>","children":null,"spread":false},{"title":"归一化数据:k等于3的聚类.png <span style='color:#111;'> 41.56KB </span>","children":null,"spread":false},{"title":"[2,6]的所属簇:k=3.png <span style='color:#111;'> 6.82KB </span>","children":null,"spread":false},{"title":"测试数据:k等于2的聚类.png <span style='color:#111;'> 22.46KB </span>","children":null,"spread":false},{"title":"测试数据.csv <span style='color:#111;'> 197B </span>","children":null,"spread":false},{"title":"归一化二维矩阵.csv <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false},{"title":"测试数据:k等于3的聚类.png <span style='color:#111;'> 27.84KB </span>","children":null,"spread":false},{"title":"测试数据:k等于4的聚类.png <span style='color:#111;'> 30.82KB </span>","children":null,"spread":false},{"title":"pca.py <span style='color:#111;'> 846B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"[2,6]的所属簇:k=4.png <span style='color:#111;'> 6.71KB </span>","children":null,"spread":false},{"title":"测试数据:k等于5的聚类.png <span style='color:#111;'> 34.23KB </span>","children":null,"spread":false},{"title":"[2,6]的所属簇:k=5.png <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"[2,6]的所属簇:k=2.png <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false},{"title":"归一化数据:k等于5的聚类.png <span style='color:#111;'> 49.97KB </span>","children":null,"spread":false},{"title":"归一化数据:k等于2的聚类.png <span style='color:#111;'> 29.81KB </span>","children":null,"spread":false},{"title":"归一化矩阵.csv <span style='color:#111;'> 26.38KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 7.84KB </span>","children":null,"spread":false},{"title":"exp1","children":[{"title":"process.py <span style='color:#111;'> 10.85KB </span>","children":null,"spread":false},{"title":"data1.xlsx <span style='color:#111;'> 16.29KB </span>","children":null,"spread":false},{"title":"data2.txt <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"data3.csv <span style='color:#111;'> 6.65KB </span>","children":null,"spread":false},{"title":"data4.csv <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 360B </span>","children":null,"spread":false},{"title":"实验结果.png <span style='color:#111;'> 16.95KB </span>","children":null,"spread":false},{"title":"insertData.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明