基于神经网络的平面磨削表面粗糙度预测模型

上传者: 38614812 | 上传时间: 2021-08-10 18:01:49 | 文件大小: 1.67MB | 文件类型: PDF
针对平面磨削的特点,采用正交试验方法获取学习样本,用BP神经网络建立砂轮径向切入进给量、轴向进给量和工作台进给速度与表面粗糙度关系模型,并用MATLAB实现对该模型的训练和仿真,由此得出表面粗糙度预测模型。结果显示:该模型具有较高的预测精度,在学习样本的采样区间平均预测误差为3.7%,最大预测误差为7.9%。为平面磨削表面粗糙度预测提供了一种新的可行方法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明